f()“f“«/u\ﬂll’//l" {"( A/Afl \/7-‘{:,\ ,—/ s '/ii","l'. '3 jtv,'/;‘f‘ (/ ] (;)—((if"ﬁ\(' 1l i 177N ;5‘7/’2/“ Yo s /,/' I/Z
Siellie , WA, Do 2i- 2%, 1995, ' X

1 Jetecting 1 lidden Failure Modes in Critical,
I'mbedded Software

1 Yobyn 1{ 1 aw
August 31, 1994

A bstractl

This experience TePort describes a method that has been used successfully Lo de-
{cct hidden failure modes in critical, embeddedspaceeraft software. The methodis an
adaptation of an carlier, controversial approach called failure modes and effects anal-
ysis. Theadapted method was foundto be wdl-suited toidentifying latent software
design weaknesses involving complex system interactions and dependencies in the two
apy rlications described here.  This experience may be useful for other high-integrity
software systems in which the possibility of hidden failure mnodes is a major concern.

1. Introduction

Detecting hidden failure modes is @ diflicult but important problem in the design analysis
of critical spacecraft, software. This paper describes the successful application of a design
analysis method to the critical software of two spacceraft. The goal was to identify hidden
failure modcs. T'he method, an adaptation of carlier failure modes and eflccts analysis pro-
cedures, focuses on the eflects onthe spacecraft of anomalousinputs and incorrect software
activities,

A failure mode jg defined to be “the physical o functional manifestation of a fajlure.” A
failurc is defined to be “an cvent in which a system or system component dots not perform
a required function within specified limits” [1].

1.1 The Problem

Thesoftware 0] | spacecraft isembedded and distributed 011 several different {light computers,
some of which operate in parallel as redundant, backup units. The possibility of hazardous
interactionsamong the software processes executing on different computers, as well as the
complexity of the timing dependernicies, make the detection of failure modes diflicult. Sys-
temn issues such as storage capacities, noise characterisitics, commullication protocols,and
trcacherous operating environments may contribute to software interface failures that elude
routine analysis or testing. Similarly, hidden failure modes may involve inadequate software
responises Lo extreme conditions or extreme values. Anomalous hardware behavior, unan-
ticipated states, invalid data, signal saturation, andincorrect triggering of error- recovery

t
(LIl jre g

d”/




software arc robustness issues whit}} complicate the production of high-integrity, embedded
softwarc.

1.2 Overview of the Method

Soft ware 1"ailure Modes and Effects Analysis (SI'MIS A)is a methiod for analyzing the various
ways inwhich software may fail to mcet its functional requiren jents and the conisequences
of cachsuch failure mode. A SIFMIEA is typically perforined as part of the design anal-
ysisprocess. ldeally, the analysis is performed after a design document exists and before
implementation begins.

The goal of the SFMISA is to aid inthe production of reliable software. “Defensive design”
or designing in protection against hazards is ancssentialelement of efforts to develop robust,
highly rcliable software [9, 13]. SI'M EA’swere used inthe two applications described here to
help reduce thenumber of failure modes, minimize the cffect of the remaining failure modes,
andscarcli for unanticipatedfailuremodes.

The SKM EA method was chiosen for these applications largel y because it contributes to
a syslcems approach to design valid ation. 1t focuses onthe ways inwhich software can con-
tribute to the system’s rcaching a hazardous state. SI'M IXA’s anal yze the software responsc
to hardwarc failures (for example, malfunctioningsensors) or to operator crews that result
inbadinput data (for cxample, inappropriate commands or paramnceter settings) . They also
analy zctheceflect onth cr hardwarc components of incorrect soft warcactions (for example, a
software process issuing wrong commands). S'MIA’s are particularly concerned withun -
covering hiddendependencicsor interactions which could cause the propagation of crroncous
data to other softwarc m odules.

SIFMEA’s differ from causal analyscs (such as Fault 1rce Analysis) in that a SFMEA
postulates the existence of bad data, or unexpected behavior and then investigates the effects
of that anomaly onthe correct functioning of the software module and the system. Whether
the data or logic could actually be corrupted inthat manner (for example,the arrival of
outdaled sensor data, or abnormal terminationof the software module at a certain point) is
not th ¢ prisnary concern. (In fact, judgments as to whether a particular failure scenario is
¢ redible on a spacecr aft often shift as development and iimplementation progress.) T'he focus
in the SF'M EA is instead on the corisequences Of incorrect data or inappropriate software
activity.

If the eflects of bad data or unexpected behavior can be shown 1o be acceptlable, then
confidence as to the software’s robustness is enhanced. Examples of acceptable effects in
the applications described here are that the bad data arc rejected by the software logic, or
that premature termination of the software module still leaves the subsystem in a consistent
stalc.

If the eflects of the bad data or unexpected behavior areshown to be unacceptable, then
this inforiation is fed back intothe development process or used to develop test cases. }ox-
amples of unacceptable eflects are that the bad data are used in a control decision resulting in
crroncous issuance Of cornmands to spaccerafl subsystems, or that an abnormal termination
of the software rodule results in a global variable being updated while the status variable
still indicates that no change has beenmade.




The oulline of the rest of the paper is as follows. Scclion 2 describes related work. Section
3 describes the process used to perform SI'MIA’s on the critical spacecraft software. Section
4 presents the results found in applying the SFMEA method to those software systems.
Scction b offers some concluding remarks.

2. Related work

Software IMailurc Modes and Effects Analysis (SF'MISA) is an extension of hardware Failure
Modes and Eflects Analysis (IFMYA). Nardware FMEA’s have been extensively used and
documented. [15] . TTicre is no comparable docuinented standard for SFPMISA S, although
the usc of S'MEA’s is well-clc)cllliclltecl [5, 17]. The System Safety Analysis Handbook, for
example, provides a brief, non-procedural description of S'MIEA’s [ 20].

Past reviews of software failure modes and effects anal yis techniques have beenmixed.
Variants of the SI'M J6A method have been used successfully in several applications. Idor
example, a technique similar to SEMISA’s, called Softwarc Yrror Iflects Analysis (SIA ),
was used successfully in the development of the rendezvous and berthing software for the
Columbus Iree Flyer with the Space Station. Yor critical software, a SIICA was required
[22].

M orcrecentl y, a paper by McDermid and Pumnfrey describes a technique for software
safety analysis bascd 011 a structural approachto the “imaginative anticipation of hazards”
[11]. Unlike SEMIEA’s, their work concentrates on information flows and develops sets of
guide words to promptl considcration of the hypothetical failures.  Like SI'MIA’s, their
approach includes table-based analysis that considers the effeets of cach hypothetical failure,
as well as the failure's criticality andlikelihood.

The usc of failure modes and eflects analysis for software hasbeencriticized because
the failure modes for a specific software systcmn, particularly a cornplex, embedded system,
cannol be enumcrated. SF'MICA’s differ from hardware FMEA’s in that, while hardware
can be rcasonably considered to have a limitednumber of failure modes, software has a
much larger and unpredictable number of failure inodes. SI'MEA’s do not offer as high a
degree of confidenice in the design’s correctness as do hardware FMIGA’s, since SI'MIEA’s
cannol provide certain coverage of all failure modes. our expericnce was that, despite
this limitation, SFMISA’s were useful inidentifying additional failure modes. By detecting
hazards not previously recognized during requirements and design analysis, the SFMIA’s
contributed tothc overal robustness of the systein.

The SFMEA isnot considered to bean adequate validation tool by some software cn-
gincers because Of its informality. It is a manual rather than an automatic method and
depends on the knowledge of the analyst and the accuracy of the documentation. Thesc
limitations suggest that for somecap plications anddevclopment environments, SEMEA’s arc
not an appropriate choi ce. ‘J heuse of SFMEA’s described hiere was chosen to supplement,
rather than replace, other requirements and design validation efforts by the development
tcamn to produce highly rchiable software.

Attempts to auntomate a p rocess similar to SFMEA’s (for cxamnple, by expanding a
directed-graph fault tree analysis tool so that crrors can be introduced and their effects
tracked) have not provided a substitute for manual SFMEA’s [3, 4]. Because automated




G,

g,
¢ x»%(?l/ 5%
[ Preliminary SW s Vault
‘ Hazards AnaIySS P > FMEA ] > 11‘0('.'
/4,% Analysis
j(le‘?,v
* Requirements . Design * . Design
“ 1ligh-level « J.ow-level . Hierarchical
. Bottom-up . Top-down
. Effects of failure .Causes

Redesign

Figure 1: The Role of Failure Modes in Analyzing Hazards

fault-analysistools require creating amodel Of the systemn as the first step, thie results tend
tomirrorthedesigner’sunderstanding of the system and so lack the mdependent validation
advan lages of the SEMISA. More rigorous statc-reachability analyses, though useful s require
thorough and time-consurning modellinig of the systom.

The experience reported here describes two app lications in which the problem was to
dctect hidden failure modes in critical, embeddedsoftware. The SI'MISA method p roved to
beauscful and effective tool with which to undertake the analysis needed to solve the problem
in these applications. Theremaining sections of this paper report on that experience.

A SIFMEAhas several advantages thatl are not shared by other validation methods. First,
thesimplicity of the method makes it easy for developersto review the results and incorporate
thiem ink) silysexjicne designiterations ortest plans, Sccondly, a SFMEA allows independent
validation} of thedesign from the existing documents (rather thanrequiring thereduction of
the existing documentation into a simplified digraph or state model). Thirdly, although all
validati on meth ods analyze the correciness of the design in the nominal case, a SK'MEA aso
postulates the existence of bad data and incorrect software activitics. The SI'M A considers
the effects on the software and the system Of  anomalous inputs and anomalous events. A
SI'MISA thus analyzes the robustness of the software, aswell as its functional correctness.

The relationship between the SFMEA and other static evaluation methods is described
ill Iigures 1 and 2. Figurce 1 shows how theresults Of a preliminary software hazards analysis
inthe requirements phase canidentify faillure modes frorn which the software must rcc.over.
For example, for system-level error recovery, the software must detect and respond appropri-
alcly to such problems as a power 10ss, propellant tank overpressure, excessive temperature,
interruption of uplink comi nandability, and loss of downlinked scientific and engincering
telemetry. A SFM EA anal yzes whether the design of the onboard crror- recovery responses s
adequate andwhctherother,unidentified failure modes can mist or be inadvertently caused
by the error-recovery software. If further analysis is needed of newly identified failure modes,
a faultl-tree analysiscanbcundertaken. A fault-tree analysis takes a knownhazardasits



Funclional and
Yeiformance Requircinents

-
WQUIREMENTS ANALYSIS
* S - + New
Preliminnry .| Formal Specification Requirements
Software S and Verification (Feedback)
Hazards Analysis of Reqgulrements
{ ’ I
Teault Protection More robust, unambiguous
Requlremnents 1equirements
»

Cortected and Yonhauced Requirements Resultin
Befter Desipn
-l

DESIGNANALYSIS

v Y \

¥ailure Modes and Yault Trec Analysis Yorinal speclfica tion and
Eifects Analysis > » Top Down » | verification of design
e Yow Tevel ¢ Causes of fallures .nigh Level
. Effectsof failure . . Show desired sysll‘ln—k‘vi‘l
New N ew propetties hold
tazards Hauzards

Radesign
(eedback)

Corrected Design, Results
' in Better Iinplementation

Figure 2: SFM KA and Related ‘1 ools

root and winks backwards to determine the possible muses [2].

Figure 2 shows anexpanded view of the SFMIEEA in the context of other analysis tools.
SIFMEA is a design-analysis method (bottom hall of figure)y which, based 011 needs, can
be applied alone or in combination with other analysis tools to identify and control failurce
modecs.

3. Applying SIFMIEA’s to Critical Spacccraft Software

SIFM FA’s were performed on the low-level design of thirteen software processes on Syacecraft
A. These software processes arc highly eritical in that they are the autonomous processes
responsible for error recovery onboard the spacecraft. The analyses were performied niidway
through the development process (after design documentation existed but before code ex-
isted). The SFMEA’s established a bascline consistency between requirements and design,
and were cflective in finding significan { design crrors. Jater participationin walkthroughs of
the software design on Spacecraft. A, audits of the code (tracing the d ¢ sign into the actual
softwarc and verifying that known crrors were corrected without introduci ng new errors),
andreview of software problein and failure reports gen erated during system testing were all
g rounded in the carlicr SEMEA work. Similar efforts arc now underway on the critical error-
recovery software processes on Spacecraft 1. Todate, three SFMIGA 'S have been per forinied




o1) Spacccraft B.

The SEM A s performed em Spacecraft. A‘s software used a hardware-like vocabulary
(“open, '’ “short,* “opposite,”’ “other”)to describe the possible defects inthe software. This
classification was later expanded for Spaceeraft B to include a wider range of defects (for
example, timing) that have beer found Lo recur in crror-recovery Software [1 0]. 'The revised
classification offers greater coverage of defects and is consistent with current  classifications
of errorsin software [1, 12, 14, 1 9].

Another change that was made was to assign criticality and likelihood I'stings to the cf-
fects. This addition was in response 10 requests from the requirements and design engineers,
whouse the eriti cality information to prioritize their redesi gn and testing needs. The critical-
ity rating is an ordered pair. The first clement of the pair refers to a six-ticred classification
Of thceffect Of the failure onth e system (from "510 noticeable impact” to “comiplete loss of
mission ?)T'he second €l ement of the pair classifies the probability of the failure occurring,
based o11 experience with similar software (“high,” “medium,” and “(low.”) []6]-

Softwarc Failure Modes and 1flects Analysis is a design-phase validation tool. Design
documentation including textual descriptions and graphical specifications is used in the
SEMISA process.  Ddiagrammatic descriptions Of the functional flow, suchas flow charts
of cacl) software module, object-o~iclltc(l data-flow and state diagrans, or Statecharts and
Aclivity Charts, arc used as input to the S'MIA P rocess, if they exist [6, 18).

The followi ng steps were performed for cach error-recovery software P rocess thatl was

analyzed.

1. Thenormaloperation of thesubsystemor function to be protected by the software was
described. This deseription was based 011 the requirements and desi gn documentation,
the analyst’s understanding of the syster In, and additional explanations fromthe project
personnel , asnceded . Al example, from Spacecraft A's systein -level software that
monitors and responids to the loss of a health indicator (@ “heartbeatl” sent between
computers) was a description of how the heartheat function belyaves.

2. Thie possible functional failures of the subsystem or function to be protected were
described. Continuing with the Heartbeat-loss example introd uced above, this step
deseribed failures sucly as “no heartbeat,”  “heartbeat not updated ” “heartbeal up-
d ated but garbage,” and “hcartbeat not synchronized with expected value”. Again,
the informationneeded for thisstep was available in the design documentation and
from conversations with the requirements and design engineers.

3. I'he normal operation of the software in protecting the subsystem or function was
described. 1 hisstep identified how the systemn- level crror-recovery software responded
to cach of the failures listed above. Theinformation was avail able from an analysis of
11 documentation and follow-up discussions with the desighiers. This step validated
the adequacy of the design to acconiplish the required recovery and confi rmed e
SI'MISA analyst’s understanding of the software.

4. The possible failure modes and effects of the error-recovery software were identified.
This step was the crux of the SFMEA| since it analyzed both whether the software

6




protected against known failures and whether the software could cause additional fail-
urcs, ¢.g., by responding to transients or by configuring the spacceraft to a minimally
uscful safe state when such a reconfiguration was unnccessa ry. of special concern was
the possibility of unexpected interactions among redundant hardware components and
compulers or among the software processes. For example, in the Heartbeat-1 .0ss ex-
ample, the SKMEA investigated scenarios in which a failure or apparent failure of the
Licartbeat would not prompt a correct respronse, or in which an inappropriate response
could create a problemn where none existed previously.

A pair of tables was constructed for cach software process to assist inthe analysis of
any possible failures of the software. These were the Data T'able and the Kvents *J able. A
1)ata ‘Jable involves communication failures. It provides the informationneededtoanalyze
data dependencies and software interface errors. An Fvents Table involves software process
failures (where “process” mceans “the program in execution”) [8, 21]. The Events Table
provides the information needed to analyze the effects of failures possibly caused by software
that fails to function corrcetly.

The first type of table is the Data Table. This table evaluates:

1. the eflect of receiving bad input data on the behavior of the process being analyzed.

2.1he eflect of producing bad outputl data on the behavior of the processes that usc this
data.

For cachinput (data iteinread or reccived by the software process)and cach oulput
(commands to spacceraft subsystemns and updates of data items), cach of the following four
faults is postulated:

1. Absent Data: Lost or missing messages, absence Of sensor input data, lack of input
oroutput, failure torcccivenceded data, missing commands, missing updates of data
values, data 10SS duc tohardware failures, failure of a software processor sensor to
send thedata needed for correct functioning of this software mod ule.

2. Incorrect Data: Bad data, flags or variables set to values that don’t accurately de-
scribe the spacceraft’s state or the operating environment, crroncous triggers, limits,
deadbands, delay timers; crroncous pa ram clers, wrong com mand s output, or wronig
paramecters to the right commanids; spurious or unexpected signals.

3. Timing of Data Wrong: Dala arrives too late 1o be used or be ac.curate, or too tally
to be used or be accurate, obsolete data is usced in control decisions (data age); inad-
vertent, spurious (unexpected), or transient data.

4. Duplicate Data: Redundant copics of data, data overflow, data saturation.

Itach of these four columns is subdivided into two parts: Desceription and IfJcct. The
Desceripti on subcolumn describes the fault as applied to the relevant data item. For example,
if the dataitem IS aninput called eritica lsequenicc:flag, and the data fault type is “incor-
rect valu €,” the Deseription subcolurnnmight state, “flag sel to truc during non- critical
scequerlee.”

~J



The Iffect subcolumn is a shorthand d escription of the conscquence of the data fault
type locally on the data item and more globally on the subsystem and system. in the
example given, the entry might state, “Frror-recovery response called erroncously.”  (For
casc of reference, entrics may also provide a forward reference to a paragraph in thie SFMEA
that contains further analysis of the item.) In general, the effect of a fault on input data
will be cither that a state is not updated as it should be, or that the state change is not
visible to the software that usesit. The eflect of a fault 011 output data will usually be that
other componients (software p rocesses or hardware units) lack the information they need to
function correctly.

The sccond type of table is the Fvents Table. This table describes both the local cffect
of performing anincorrect event on this module’s behavior and the global, or end, effect of
the incorreet event 011 other parts of the subsystein and system. For cach event that occurs
as the process exccutes, four event fault types arc postulated. What constitutes an event
dependsonthelevel of detailof the documentation provided,but is usually considered to
be a single action (c¢.g., branch, rcad, write, output a command).

There are four kinds of event fault types:

1. 11 alt/Abnormal Termination: Open, stuck, hung, deadlocked at this point (evenit) in
theprocess.

2. Ommission: Fvent fails to occur bul p rocess continues exceution: jumps, skips, short.
LN b b

3. Inicorrect Logic/Ivent: Behavior is wrong, logic is wrong, branchlogic is reversed
(“greater than or cqual “ or ‘(less thanand equal’’is associated with wrong conditions),
wrong assuinptions about state, precon ditions, “don’t cares”aren’t truly SO, event (c.g -

cotnmand issue(y is wrong toimplement the imtent or requirement.

4. Timing/Order: Event occurs @t wrong time or in wrong order, event occurs too carly
(p rem ature; systemnot in proper mode to receive or process it), too late; the sequenice
of’ cvents IS incorrect, an cvent that must precede another event doesn ‘'t occur as it
should; iterative events occur intermittently rather than regularly, events that should
occur only once instecad occur iteratively.

Isach of these columns is subdivided into two parts: Desceription and Iffect. The Deserip-
tion subcolummn descri bes the fault as applied to the event. For example, if the event is the
calculation of a pointerinto atable and the event fault is “Incorrect logic,” the deseription
might state, “Pointer will bemiscaleulat ¢d.”

The Mffect subcolunn is a shorthand description of the consequence of the event fault
typconthe relevant cvent andihe failure mode(s) that might result. in the example given,
the entry might state, “Pointer points past end of table, eflcctively bypassing the intended
reconfiguration.” (As with the Data Table, entrics may also provide a forward reference to
a, paragraph in the S FMEA that contains further analysis of the iter n.) In gerieral, the
cffect of a Halting Failure will he that there is 110 output from the software response. 'l 'he
p ossibility that some outputs (c.g., updates of shared variables) occu r before the process
halts carries a risk of the spacccraft being left inaninconsistent state. T'he effect of an
Ormission Failure 1S often that no output or incorrect output is produced(c. g., wrong time




or wrongorder). Again , the software may be left inaninconsistent state. Most often, the
cffect of Incorrect Logi c is that the software’s behavior is wrong, i.e, it docsi’t satisfy the
functional requirements or produces wrong; output.

The effect of a Timing/Order Failure is usually that the output docsn’t satisfy the tim-
ing constraints, requiredorder of coonmar1ds(c.g., “Instrumment mustbe titriied off before
replacement heater is turned on”), or data dependencies (e.g., “ The flag must be updated be-
fore it is used” ) needed for a correct interface with the other processes that use this software
process’ oulput.

The effect of the various failure types included analyscs of what the effects would be if
the correct design (as presented in the document) were to be iinplemented incorrectly. That
is, the S1*MEA considered not only cffects of flaws inthe design, but cflects Of incorrectly
implementing a correct design, The goal was to produce more robust software by a1l alyzing
what could go wrong, not just wheth er the current design was flawed .

Using the SYMISA tables, concerns and possibly vulnerable areas were identified. Thesc
were docut nented in sufficient detail so that a reader could determine whethier the design
or the requirements n ¢ eded to bechanged. Most of the effort ot performing a SI'M EA
was expendedhere,inreviewing the SI'M EA tables to sce if the software lacked rob ustness
again st failures. During this step, contact with the software designers a n d requirement
cn gin cers was iimportant to distinguish ar nbiguou s/i ncornplete documentation from design
flaws. Including copies of all rclevant documentation as well as explicit references tomemos,
expert opimions, cle., inthe final reports encouraged rapid feedback of’ the results into the
designdevclopment process.

The results of cach SFMIEA were written up inthree parts: (1) Documentation incon-
sist encies/ ambi guiti es/inaccu racics/ omissions (used both for updating docum entationand
for validating the code against the design); (2) Issues and concerns (possible unanticipated
failure modes or cffects, ordered according to criticality); and(3)the supporting SI'M 15A

tables.

4. Results

Table ] summarizes SiX classes Of failure modesidentified during SI'MISA of the two systems.
These were hidden failure modes in that thicy involved unanticipated way s in which the
systems could fail to mect their functional requirements. The potential eflect of thie failure
incach case was significant degradation of performance or 10ss of redundant capabilitics.
The probability of the faillure occurring in cach case was low, since the softwarce analyzed is
invoked only at the rarc and critical times that onboard crror recovery 1S necessary.

Predictably, the close analysis involved in performing the SFMISA’s found many other
crrors, such as documentation inconsistencies and ambiguitics as well as discrepancics be-
tween the requirement specifications and the design. These p roblems were described in the
final SI'M EA report in a separate scction. Their identification during the design validation
phasc saved time and cffort later in the integration and system testing phase. However, they
arc not mcludedinthe (Discussion heresince they did not Jeadto failure modes.

Iailure modes involving un cepected inleractions among soflware processes wereidentified
in both systems. 1 n both cases, thisinvolved software distributed indiflerent p rocessors.



A example is the use of anoutdated value from a failed, remote sensor for a key, conitrol
(Iceisiol] inthe central processor.

Table ] . 1] idden Failure Modes Identified Using Software Failure Modes & Fflects Analysis
Result Spaceerafl A Spaceerafl I3

1. Unexpected interactions among software X X

2. ¥rroncous invocation of process X X

3. Unexpected interactions among redundant units X

4. Uncxpected propagation of results X

5. Unslated assmmplions required for correct belavior Dt X

6. Timing requircments not always met X X

SFMEA’s found instances in both systems in which an erroncous invocation of the soft-
ware could occur. Inone case, a {ransientcerror was able to provoke anunintended error
response.  Inanother case, a persistence counter could be reset contrary tothe required
behavior, thereby omitting necessary activities.

A hiddenfailure mode on Spacecraft A involved uncapected interactions belween redun-
dant components, i.c., between the nearly-i dentical copics of the software resident. Cm the
p rime and backup processors.  Required hardware reconfigurations were omitted when  a
service ronitine Was invoked by both redundant componen ts within a certain time interval.

A scenario was found 011 Spacccraft A in which unczpected propagation of resulls could
occur. During a programmed delay, certain commands to @ remote unit were able to be
rcissued crroncously.

Unstated assumpli ons require d for correet software behavior could indirectly lead Lo fail-
urc modces in three cases. These involved an assumed but unchecked precondition that is
occasionally false (switchscttings), a hidden dependency on human intervention (updating
flag values following error- recovery activities), and a hidden dependency on other software’s
undocumented behavior (reinitializing the value of persistence counters and limits).

Finally, several timing issucs | particularly timing requirements not always met were found
by the SEMIEA’s through ana lysis of the effects of anomal ous situation s and postulated out-
of-range data values.

The summary in Table 1 points out one of the key advantages of performing SFMEA’s
on the applications described here. SKFMEA’s emphasize a systems approach to software
analyfis. They examine the software’s responsc to hardwarce failures and the effeet 011 the
hardwarc of softwarel actions. In real-time, embedded systems, it is these interfaces that
have historically produced the persistent errors that remain hidden until system testing or
opcrations [10]. SFMISA’s helped ullc.over these hidden interactions and dependencics on
tllc spacecraft.

10




5. Conclusion

Inthe two spacecraft applications reported hiere, the SEMISA method was effective in de-
tecting hidden failure modes. The SFMIA’s focus 011 tracking the effects of anomalous
inputs andincorrect software behavior uncovered design flaws and gaps in the software’s
robustness. Failure modes involving unexpected interactions among software processes, hid-
den dependen tics, occasionaly false assumptions, and unanticipated timing were found.
The experience reported here suggests that SFMEA’s may be useful for analyzing embedded
software inother high-integrity applications in which complex system interfaces, redundancy
management issues, and critical timing demands make the possibility of hidden failure modes
a concern.

Acknowledgments

The author thanks Steven Tyler, Robert Keston, Yoko Ampo, and Robert Woodhouse for
their work 011 SF'MEA’s and for their valuable suggestions.

The work described in this paper was calv-ice] out at the Jet I'repulsion laboratory,
California lnustitute of Technology, and was sponsored by the National Acronautics and
Space Administration.

Reference herein to any specific commercial product, process, or service by tradename,
trademark, manufacturer, or otherwise, dots not constitute or imply its endorsement by
the United States Government or the Jet Propulsion Laboratory, California Institute of
Technology.

References

[1] E. A. Addy, “A Case Study onisolation of Safety-Critic.a Software,“ in I’rocedings of the 6th
Annual Conference on Computer Assurance, NIST /IELE, 1991, pp. 7' 5-83.

[2] S. S. Cha, N. G. Leveson, and T'. J. Shimeall, “Safety Verification in Murphy Using Fault
Tree Analysis, Proc of the 10th International Conference on Software Engincering, Apr, 1988,
Singapore, pp. 377-386.

[3] FEAT (Failure lnvironment Analysis Tool), NASA Cosmic #f MSC-21873.

[4] FIRM (Failure Identification and Risk Management Tool), Lockheed Engincering and Sci-
cences Co., Cosmic.

[5] J. R.¥ragolaand J. II’. Spaln, “The Software Lrror Effects Analyis; A Qualitative Design
Tool ,* Record, 1973 IKEE Symposium on Computer Software Reliability, 110;1) 73CH 0741-
9C, 1973, pp. 90-93.

(6] The STATEMATE Approachio Complez Systems, i- Logix.

[7] IEBE Standard Glossary of Software ngincering Terminology, 111Y, Std 610.12-1990. New
York:11MEF, 1990.

11




(8]
[9]

[1¢

[11

[12

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]
[21]
[22]

1,. Lamport and N. Lynch, “Distributed Computing Models and Methods,” Formal Models
and Semantics, Vol. I3, Handbook of 1'heoretical Computer Science, Elsevier, 1990,

N. Leveson, “Software Safety in Embedded Computer Systems, Communications of the ACM
Feb, 1991, Vol. 34, No. 2, pp. 35-46.

R.Lutz, “Analyzing Software Requircinents Frrors in Safety-Critic.al, Embedded Systems,”
Proc of the ILEE International Symposium on Reguirements Engincering, J an 4-6, 1993, San
Dicgo, CA, pp. 126-133.

J. A. McDermid and D. J. Pumfrey, “A Development of Hazard Anaysis To Aid Software
Design,” Proc of COMPASS 94, Jun 27-30, 1994, Gaithersburg, MD), pp. 17-25.

T. Nakajo and 1I. Kume, “A Case history Analysis of Software Frror Cause-ltffcct Relation-
ship,” 1IXIT Transactions on Software Engineering, 17, 8, Aug 1991, pp. 830-838.

1'. G. Neumann, “The Compu ter- Related Risk of the Year: Weak Linksand Correlated
Events,” in P’roc 6th Annual Conj on Computer Assurance. NIST/1EE}E, 1991, pp. 5-8.

T. J. Ostrand and k. J. Weyuker, “Collecting and Categorizing Software Error Datainan
Industrial ¥Environment,” The Journal of Systems and Software, 4, 1984, pp. 289-300.

Procedures for Performing a Failure Mode, Effects and Criticality Analysis, MIL-STD-
1629A,24 Nov 1980.

Project Reliability Group, Reliability Analyses Handbook, Jet Propulsion laboratory 1)-5703,
July, 1990.

1). J. Reifer, ‘‘Software Ivailure Modes and Effects Analysis, ” 1EEF Transactions on Reliabil-
ily, vol. R-28, No. 3, Aug1979, Pp. 247-249.

J. Rumbaugh, et a., Object- Oriented Modceling and Design, Prentice 11 all, 1991.

R. W. Sclby and V. R. Basili, “Analyzing ¥Error-Prone System Structure,” 1INEE Transactions
on Soflware I'nginecering, 17, 2, Feb 1991, pp. 141-152.

Systeimn Safety Society, System Safety A nalysis Handbook, July, 1993.
A. S. Tanenbaum, Modern Operating Systems, Prentice-Hall, 1992,

J. Wunram, “A Strategy for Identification and Development of Safety Critical Software Em-
beddedin Complex Space Systems,” |AA 90-557, pp. 35-5].

12



